Hematopoietic Expression of Hoxb4 Is Regulated in Normal and Leukemic Stem Cells through Transcriptional Activation of the Hoxb4 Promoter by Upstream Stimulating Factor (Usf)-1 and Usf-2
نویسندگان
چکیده
The homeobox genes encode a family of transcription factors that regulate development and postnatal tissue homeostasis. Since HOXB4 plays a key role in regulating the balance between hematopoietic stem cell renewal and differentiation, we studied the molecular regulation of HOXB4 expression in human hematopoietic stem cells. HOXB4 expression in K562 cells is regulated at the level of transcription, and transient transfection defines primary HOXB4 regulatory sequences within a 99-bp 5' promoter. Culture of highly purified human CD34(+) bone marrow cells in thrombopoietin/Flt-3 ligand/stem cell factor induced HOXB4 3-10-fold, whereas culture in granulocyte/macrophage colony-stimulating factor, only increased HOXB4/luciferase expression 20-50%. Mutations within the HOXB4 promoter identified a potential E box binding site (HOX response element [HXRE]-2) as the most critical regulatory sequence, and yeast one hybrid assays evaluating bone marrow and K562 libraries for HXRE-2 interaction identified upstream stimulating factor (USF)-2 and micropthalmia transcription factor (MITF). Electrophoretic mobility shift assay with K562 extracts confirmed that these proteins, along with USF-1, bind to the HOXB4 promoter in vitro. Cotransfection assays in both K562 and CD34(+) cells showed that USF-1 and USF-2, but not MITF, induce the HOXB4 promoter in response to signals stimulating stem cell self-renewal, through activation of the mitogen-activated protein kinase pathway. Thus hematopoietic expression of the human HOXB4 gene is regulated by the binding of USF-1 and USF-2, and this process may be favored by cytokines promoting stem cell self-renewal versus differentiation.
منابع مشابه
Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells.
Thrombopoietin (TPO), the primary regulator of platelet production, also plays an important role in hematopoietic stem cell (HSC) biology. In previous studies we demonstrated that the self-renewal and expansion of HSCs is 10 to 20 times less robust in tpo-/- mice than in controls. To explore the molecular basis of this effect, we postulated that Hoxb4 might mediate at least part of the TPO effe...
متن کاملUSF1 and hSET1A Mediated Epigenetic Modifications Regulate Lineage Differentiation and HoxB4 Transcription
The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax comp...
متن کاملNF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4.
The transcription factor homeobox B4 (HOXB4) is preferentially expressed in immature hematopoietic cells and implicated in the transition from primitive hematopoiesis to definitive hematopoiesis as well as in immature hematopoietic cell proliferation and differentiation. We previously identified Hox response element 1 (HxRE-1) and HxRE-2/E-box as 2 critical DNA-binding sites of the HOXB4 promot...
متن کاملDownstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells.
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expre...
متن کاملHEMATOPOIESIS AND STEM CELLS Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 192 شماره
صفحات -
تاریخ انتشار 2000